
PowerBall Lottery Simulator Revamped
Introduction
I read the very well written article by “roachmaster” the other day and thought that it was a good

beginner’s project to learn C++. But then I got thinking. Maybe it would make a good guide for an

intermediate level project as well. It implements the same rules as “roachmaster’s” simulator, but it

differs in design and somewhat in implementation. It uses OO concepts and the STL more

extensively.

C++
C++ is a very versatile language, once you start to take advantage of everything it has to offer. The

STL is great for starters. One of the goals Stroustrup (the inventor of C++) had was to make the

std::vector class at least as quick as C-style arrays. He has also expressed that the C-style arrays are

ridiculous, they don’t even know how many elements they contain. Another important aspect of C++

is the notion of objects. An object is a user defined type that has relationship with other objects. This

means that if you got a function that calculates areas in square centimeters you can create a

centimeter object that you pass to the function instead of a naked double value. Now you are safe

from anyone trying to pass an inch object to that particular function. It will generate an error at

compile time and you can’t ship software if it isn’t compiled. This is also known as type safety.

This project
This project is aimed at programmers who got the basic C++ syntax and grammar down and want to

expand on how to think when designing object oriented programs. The problem we are trying to

solve is an easy one which means we can focus more on the code and the concepts behind it.

There is much to be added to this code to make it complete, but the classes do compile and are

ready to be put into a project.

So the problem at hand is to draw random lottery numbers, create tickets to a player with random

numbers on them and to check and see if the player has won or not.

The rules
1. The lottery draws 6 balls, 5 white and 1 red ball, randomly.

2. You buy any amount of lottery tickets with 6 random numbers on each.

3. If the drawn numbers matches the numbers in your tickets, you win.

4. Bonus is awarded if you match the red ball.

Balls
When I first began designing the new version I thought that the different colored balls would make a

perfect chance to show off some object inheritance. So I created a base class Ball which implements

all code that is congruent for any ball. That is, every ball has a number and every ball has a color.

Balls can also be compared with other balls and since all balls has a number they can also be

compared with any integer.

class Ball
{
public:
 Ball(int i) { number = i; }

 int getNumber() { return number; }
 bool isRed() { return Red; }

 const bool operator == (int i) { return number == i; }
 const bool operator == (Ball &rhs) { return number == rhs.number; }
 const bool operator < (Ball &rhs) { return number < rhs.number; }
 const bool operator > (Ball &rhs) { return number > rhs.number; }
protected:
 int number;
 bool Red;
};

Now we need to differentiate between different kinds of balls. In this lottery there are white balls

and red balls. The only real difference is the color. We set a flag to tell if the ball is red or if it is not

red. Note also, that we use the base class’ ctor to set the number of the ball.

class WhiteBall : public Ball
{
public:
 WhiteBall(int i) : Ball(i)
 {
 Red = false;
 }
};

class RedBall : public Ball
{
public:
 RedBall(int i) : Ball(i)
 {
 Red = true;
 }
};

Random Numbers
A lottery isn’t a lottery without its random numbers. The RandomNumber class creates random

numbers. The ctor takes 3 integer arguments, minimum, maximum and amount. The minimum is the

lowest value to generate, the maximum is the highest number to generate and amount is the

amount of numbers to create. We use the new C++11 library <random> to create our random

numbers. First we create a random_device object. This object uses /dev/urandom on GNU/Linux to

generate a random seed to the random generator. I don’t know how windows implements this

object, but it still works. We use the default random engine (mersenne_twister_engine at the time

of writing) to generate our numbers.

We see a new C++11 construct here as well. The new for-loop. It makes it easier to traverse arrays

and other objects with iterators. It wouldn’t do to have duplicate balls. Would we count that as two

matches or one match if we got the number on our ticket? If we detect duplicates, regenerate the

number and stick the new number into the vector.

class RandomNumbers
{
public:
 RandomNumbers(int min, int max, int amount)
 {
 std::random_device rd;
 std::default_random_engine re(rd());
 std::uniform_int_distribution<int> uid(min, max);

 for (int i = 0; i < amount; i++)
 {
 int num = uid(re);

 for (int n : numbers)
 {
 if (n == num)
 num = uid(re);
 }

 numbers.push_back(num);
 }
 }

 std::vector<int> getNumbers() { return numbers; }
private:
 std::vector<int> numbers;
};

http://www.cplusplus.com/reference/random/mersenne_twister_engine/

Tickets
Next I decided to create the ticket class. It is very simple. It only holds 6 random numbers between 1

and 58 for us. It also contains logic for displaying our ticket. The most interesting thing about this

class is that we are using an object we our self’s have created, the RandomNumbers object. We also

implement the std::sort function that can sort arrays, vectors and other containers that contain basic

types (e.g. int, char, double, float)

class Ticket
{
public:
 Ticket()
 {
 RandomNumbers ticketNums(1, 58, 6);
 numbers = ticketNums.getNumbers();
 std::sort(numbers.begin(), numbers.end());
 }

 void display()
 {
 std::cout << "Ticket: ";
 for (int i : numbers)
 {
 std::cout << std::setw(2) << i << " ";
 }
 std::cout << std::endl;
 }

 std::vector<int> getNumbers() { return numbers; }
private:
 std::vector<int> numbers;
};

The Lottery
Now we have everything except the lottery itself. The interesting thing here is the use of the vector

balls. It contains pointers to the base class Ball but we fill it with 5 WhiteBalls and a RedBall. We can

do this since both are of the type Ball. Since we use the keyword new to create the balls we also

need to use delete to free the memory allocated by the balls. This is a typical example of how to use

the ctor and dtor of a class. The ctor allocates the memory needed for the object and the dtor

releases the memory when the object is out of scope.

We get to acquaint our self’s further with C++11 as we see in the line that sorts our balls. Std::sort

does not know how to sort balls yet, but it allows us to submit a custom function to show how we

want to sort them. As seen in the ball’s class, a ball knows how to compare itself with another ball.

But it feels cumbersome to write a function just to test if a ball has a lower value than another.

C++11 has the answer to this. Lambdas. A lambda-expression is a short piece of code that behaves

like a function, but can be fitted nicely into a line of code and used as an argument to functions that

takes a function as one of its arguments. It is also useful for functions that we aren’t likely to reuse

but still need for some reason.

class Lottery
{
public:
 Lottery()
 {
 RandomNumbers RandomWhite(1, 58, 5);
 RandomNumbers RandomRed(1, 34, 1);

 for (int n : RandomWhite.getNumbers())
 {
 balls.push_back(new WhiteBall(n));
 }

 std::sort(balls.begin(), balls.end(), [](Ball* a, Ball* b){ return *a
< *b; });

 balls.push_back(new RedBall(RandomRed.getNumbers()[0]));
 }

 ~Lottery()
 {
 for (auto ball : balls)
 {
 delete ball;
 }
 }

 void display()
 {
 std::cout << "Lottery: ";

 for (auto ball : balls)
 {
 if (ball->isRed())
 std::cout << "Red number: " << ball->getNumber() <<
std::endl;
 else
 std::cout << std::setw(2) << ball->getNumber() << " ";
 }
 }

 std::vector<Ball*> getBalls() { return balls; }
private:
 std::vector<Ball*> balls;
};

Winning conditions
Ok, so we got our balls, our tickets and our lottery. Now we need to see if the player has won

anything. The logic is pretty straight forward even if the code may look a bit cluttered. If you use a

good IDE it will help you highlight which curly braces are around what. I use Microsoft Visual Studio

Express 2013, but there are many other very competent IDEs out there so make sure to pick one that

suits your needs.

class Winning
{
public:
 Winning(std::vector<Ticket*> tickets, std::vector<Ball*> balls)
 {
 for (auto ticket : tickets)
 {
 int matches = 0;
 bool hasRed = false;

 for (int number : ticket->getNumbers())
 {
 for (auto ball : balls)
 {
 if (*ball == number)
 {
 matches++;

 if (ball->isRed())
 hasRed = true;
 }
 }
 }

 winnsPerTicket.push_back(matches);
 hasRedTicket.push_back(hasRed);
 }
 }

 int getWinnings()
 {
 for (size_t i = 0; i < winnsPerTicket.size(); i++)
 {
 std::cout << "Got " << winnsPerTicket[i] << " matches.";

 if (hasRedTicket[i])
 std::cout << " And has got the red ball!" <<
std::endl;
 else
 std::cout << " But has not got the red ball." <<
std::endl;
 }

 return 0;
 }

private:
 std::vector<int> winnsPerTicket;
 std::vector<bool> hasRedTicket;
};

The Game
We’re almost done now. The only thing that remains is to create a menu for buying tickets and

implement the logic needed to play. Again we need to be sure to delete the objects we’ve created

with new in the dtor.

class Game
{
public:
 Game() {};
 ~Game()
 {
 for (auto ticket : tickets)
 {
 delete ticket;
 }
 }

 void Menu()
 {
 int numTic = 0;
 std::cout << "Welcome to the PowerBall Lottery!" << std::endl;
 std::cout << "To play you need to purchase a ticket at $2. More
tickets increase the odds to win." << std::endl;
 std::cout << "How many tickets would you like? " << std::endl;

 do
 {
 std::cout << "Enter amount of tickets you would like to
purchase: ";
 std::cin >> numTic;
 std::cin.sync();

 if ((numTic < 1) || (numTic > 100))
 {
 std::cout << "Input invalid. Needs to be a number
between 1 and 100. Please try again" << std::endl;
 }
 } while ((numTic < 1) || (numTic > 100));

 createTickets(numTic);
 std::cout << "Your tickets are registered. Thank you for playing the
PowerBall lottery!" << std::endl;
 }

 void Play()
 {
 std::cout << "Let\'s see this weeks PowerBall lottery numbers!" <<
std::endl;
 lotto.display();

 for (auto ticket : tickets)
 {
 ticket->display();
 }

 Winning w(tickets, lotto.getBalls());
 w.getWinnings();
 }

private:
 std::vector<Ticket*> tickets;

 Lottery lotto;

 void createTickets(int numTic)
 {
 for (int i = 0; i < numTic; i++)
 {
 tickets.push_back(new Ticket);
 }
 }
};

Epilogue
That’s it! Almost. I’ve left some things out for you to implement, but the code compiles and the

lottery is playable with the code in this tutorial. You might want to add some function to keep track

of the wins and losses and maybe give the player a wallet object to keep money in. One could also

think of ways to save the state of the game to keep the stats between sessions. But as I’ve already

said, that’s for you to implement.

Oh, before I forget. You’ll need to include some headers to make this code work.

#include <iostream> // For std::cout, std::cin
#include <iomanip> // For std::setw
#include <random> // For all random generation stuff
#include <algorithm> // For std::sort
#include <vector> // For std::vector

All the code in this tutorial is copyleft. That is, you may use this code as you wish, basically. Make

sure to check http://www.cplusplus.com/ for more information on any function or method you are

unsure about. If you have any questions or suggestions please drop me a line either via PM or email.

“roachmaster”’s article http://www.cplusplus.com/articles/4yhv0pDG/

Author Tomas Landberg (tomas.landberg@gmail.com)

Good Luck!

http://www.cplusplus.com/
http://www.cplusplus.com/articles/4yhv0pDG/
mailto:tomas.landberg@gmail.com

